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SUMMARY

The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic
operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by
partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compress-
ible Navier–Stokes equations. Our technique consists of matching up a finite volume discretization based
on a given mesh with a finite element representation on the same mesh. An inverse operator is also built,
which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume
solution. Numerical results are also provided. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: compressible fluids and gas dynamics; finite element methods; finite numerical method;
finite volume methods

1. INTRODUCTION

Finite volume schemes are widely used in numerical solutions to conservation laws, such as
those occurring in computational fluid dynamics (CFD) and especially in complex multidimen-
sional fluid flow problems. The basic idea for constructing finite volume methods consists in
integrating over a finite control volume the divergence form of the differential equation and in
using Green’s formula to convert the result into surface integrals of fluxes that are then
discretized.

The interest of these methods stems from (i) their compactness in terms of numerical stencil,
(ii) their natural goodness of fit for the approximation of conservation laws, and (iii)
their effectiveness on unstructured multidimensional meshes. When considering flows with
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discontinuities (shock capturing, low dissipation, . . . ) or non-linear hyperbolic-dominated
flows, finite volume methods have shown their efficiency by conforming within the upwind
strategy and by ensuring robust, stable and convergent schemes.

Nevertheless, it may be necessary to compute some discrete gradients of the solution, e.g. (i)
for the implementation of higher-order schemes or (ii) for the discretization of second-order
elliptic operators.

Let us discuss the implementation of higher-order schemes. In the extension of Godunov’s
scheme to second-order accuracy in one space dimension (MUSCL scheme), Van Leer [1]
based the numerical advection on the reconstruction of a piecewise linear function. Generaliza-
tions to multidimensional flows and to unstructured meshes of this scheme have been proposed
by Barth [2] and Abgrall [3,4]; they needed reconstruction algorithms up to any order of
accuracy, limiting procedures and essentially non-oscillatory techniques. For other multidimen-
sional schemes, the reader is referred to Godlewski-Raviart [5] and references therein.

Concerning the discretization of viscous fluxes arising in diffusion–convection-like prob-
lems, a computational solution lying on the four points scheme has been widely studied by
Eymard et al. [6], Vignal [7] and Herbin [8] from a numerical and a theoretical point of view.
But some geometrical assumptions have to be satisfied: every angle � of a triangle belonging
to the mesh must satisfy �����/2−� (with ��0), and in some case, the size of all triangles
must be of the same order.

On the opposite side, centered finite element approximations, which are well suited for
second-order operators, suffer from too strong diffusion or may involve some numerical
instability in case of a too large Peclet number, i.e. a small physical viscosity. A classical
technique, in order to cure these drawbacks, is the streamline upwind Petrov–Galerkin method
(see Brooks and Hughes [9]), which is inspired from the upwind strategy well suited to purely
convective problems.

Then, an attractive alternative for the computation of gradients consists in combining finite
element and finite volume methods. Let us first mention the finite volume element method (see
Liu and McCormick [10] and Cai et al. [11,42]), where the solution of elliptic problems is
sought in a finite dimension space of piecewise smooth functions by using a finite set of control
volumes defined by the circumcenter of the triangles. These schemes have been viewed as a
finite element method (with the unknowns located at the vertices of meshes) and their error
estimates have followed from the finite element theory.

There also exists a mixed finite volume–finite element formulation (sometimes called
weighted finite volume scheme), which has been introduced for Euler equations by Dervieux
[12] and discussed by Selmin [13]. This scheme extended to compressible Navier–Stokes
equations by Rostand and Stoufflet [14] is widely used in works of Eymard et al. [6], Arminjon
and Madrane [15], Carré and Dervieux [16], Debiez et al. [17], Dervieux and Desideri [18],
Farhat and Lanteri [19], Guillard [20], Guillard and Viozat [21], Lanteri [22], Le Ribault et al.
[23], Mer [24], etc. The method is based on the combination of a Galerkin finite element
method for the diffusive part of the system and of a vertex finite volume scheme for the
discretization of the convective part: indeed, the latter allows us to introduce flux splitting and
upwinding techniques. The approximate solution is located at the vertices of the mesh, control
volumes are formed from faces of the dual mesh connecting the centroids of triangles through
medians and the finite element is the classical conforming linear finite element. Moreover, if a
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linear approximation is used and if mass is lumped or if low-order quadrature formulas are
employed, it can be shown that this scheme is equivalent to the conforming finite element
method (see, for instance, Idelsohn and Onate [25] and references therein). Feistauer et al. [26]
have mathematically derived the same approach and have established some theoretical results
for the scalar non-linear convection–diffusion problem (see Feistauer et al. [27] for the
convergence analysis of the explicit scheme, Feistauer et al. [28] for the convergence analysis
of the implicit version, Feistauer et al. [29] for an estimate of the error). This large class of
schemes tries to take profit from the advantages of both finite element and finite volume
methods, but these schemes may involve much more numerical viscosity than necessary and
the vertex finite volume method presents some drawbacks. Some high-order difference for
artificial dissipation terms and some high-order upwinding have to be combined with these
formulations and implies the computation of gradients.

More recently, Dolejsi and Angot [30] and Feistauer et al. [31] developed for the discretiza-
tion of non-linear convective–diffusion equations, a method by combining a barycentric finite
volume and a non-conforming triangular piecewise-linear finite element scheme. Their control
volumes are defined by joining the barycenter of each triangle with its vertices and the solution
is located at the middle of the interfaces. Convergence and some a priori error estimates are
established in Angot et al. [32] and Dolejsi et al. [Dolejsi V, Feistauer M, Felcman J, Klikova
A. Error estimates for barycentric finite volumes combined with non-conforming finite
elements applied to non-linear convection–diffusion problems. To appear in Applications of
Mathematics ].

Let us remark that in the context of the cell finite volume scheme (where control volumes
are the triangles of the mesh), it would be possible to use an adjoint mesh, where vertices are
the centroids of triangles of the primal mesh (Dolejsi, private communication) in order to
associate with the finite volume approximation a conforming finite element formulation. But
beside the fact that some vertices on the boundaries have to be added, it requires the complete
building of a secondary mesh.

For time-dependent compressible viscous flow problems, our aim is to propose a new
numerical way to discretize diffusion operators in the context of cell finite volume scheme. We
are motivated in developing a method to treat numerically second-order operators without any
constraint on the mesh, without building a dual mesh and without introducing any numerical
diffusion. Since finite element schemes are naturally well fitted for the discretization of
second-order operators like the diffusion operator, we propose a numerical algorithm based on
footbridges between the finite volume representation of functions and a finite element one
where footbridges are operators between the discretized spaces. Let us emphasize that both
spaces are defined on the same given mesh without building an auxiliary mesh.

In Section 2, we introduce the principle of footbridges for two-dimensional domains and we
discuss the essential features of a strategy using it to solve a scalar convection–diffusion
problem: we particularly emphasize the computational aspect of the scheme. Section 3
introduces a more relevant footbridge, which is more suited to problems with small physical
diffusion and which we use in the numerical experiments. In Section 4, we build a footbridge
that preserves ‘the mass’, i.e. �� u dx. The method is tested on the two-dimensional scalar and
linear convection–diffusion problem in Section 5. Some numerical results of convergence by
comparing the solution with an overkilled solution are provided. Then the algorithm is
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incorporated into a gas dynamics finite volume code. For a demonstration of the good
behavior of the method, we consider first a two-dimensional extention of the shock-tube
problem and second the flow past a NACA0012 airfoil, where meshes are used with different
element sizes and aspect ratios without any constraint (except the basic finite element ones).

2. MOTIVATIONS AND PRINCIPLE OF THE FOOTBRIDGES

For time-dependent viscous problems, we think that an efficient method has to be based on a
good solver of the inviscid part: the natural goodness of fit of finite volume methods leads us
to keep these methods. In the context of cell finite volume scheme (where control volumes are
the triangles of the mesh), the discretization of the second-order operator is a particularly
difficult task. But the natural goodness of fit for the viscous part of finite element methods
induces us to match up the finite volume representation of the solution with a finite element
function. And this latter representation allows to easily discretize the viscous operator thanks
to a variational formulation.

We first define two discretized function spaces: the space of finite volumes and the space of
finite elements, both defined on the same gi�en mesh without building an auxiliary mesh. The
first part of this section is concerned with the definition of these two spaces and with the
definitions of footbridges. The finite element solution is simply defined by the natural L2

projection of the piecewise constant finite volume function. The inverse operator consists also
in the L2 projection this time on the finite volume space. At the end of the section, this idea
will appear to be a naı̈ve one.

Let us note that the type of the finite element (here Crouzeix and Raviart [33] finite element)
is chosen a posteriori in order to be able to build an inverse footbridge. Indeed, after the
viscous step, the finite element representation of the solution has to be reverted to a finite
volume form (i.e. cell piecewise constant function) in order to be convected. The building of
the inverse footbridge is done in such a way that it presents no error in the case of zero
physical diffusion.

The treatment of the viscous and the convective operators is realized with a time-splitting
strategy, which on one hand allows us to use highly specialized methods to solve each steps
and on the other hand, from a practical point of view at least, allows us to modify an existing
code for solving hyperbolic systems with cell finite volumes by adding the two footbridge steps
and a finite element discrete viscous operator.

The second part of this section describes the fractional steps: (i) an inviscid step in the finite
volume space, (ii) the projection of the solution on the finite element space (direct footbridge),
(iii) a viscous step in the finite element space, (iv) the transform of the finite element
representation in a finite volume one (inverse footbridge).

2.1. Notations

We denote by � the computational domain, a bounded open set of R2 with a polygonal
boundary. Let T be a triangular mesh of �: �= �T�T T.

Let �� be the piecewise-constant characteristic function defined on each triangle T�
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��(x)=1 if x�T� and 0 elsewhere

For each edge Aj of the mesh, let us define the piecewise linear function �j such that

� �j(M)=1 if M is the center of Aj

� �j(M)=0 if M is the center of an edge different from Aj

We denote by V the finite volume space, spanned by the ��, where T� belongs to T and by
E the non-conforming piecewise linear finite element space, spanned by the �j functions. The
set E is the space consisting of P1 discontinuous functions defined by Crouzeix and Raviart
[33]. Concerning error estimates, this finite element has the same bahavior as the classical
Lagrange linear finite element.

The dimension of V is equal to the number of triangles, NE, and the dimension of E is
equal to the number of edges, NF. Let us recall that if NS is the number of vertices, one gets
the Euler formula

NS+NE=NF+g+1

where g is the genus of �. Hence, asymptotically when NE��, one has

NS�
NE
2

and NF�
3
2

NE

It is then straightforward that there is no one to one linear function between V and E.
Nevertheless, to each � in V, we associate an element in E denoted u=�EV �, which is

obtained as the solution of the following least square problem: u in E solution of

�
�

�u(x)−�(x)�2 dx=min
w�E

�
�

�w(x)−�(x)�2 dx (1)

so that

�
�

(u−�)�j dx=0 �j=1, . . . , NF (2)

Similarly, to each u in E, we first construct �=�VE u in V solution of

�
�

��(x)−u(x)�2 dx=min
w�V

�
�

�w(x)−u(x)�2 dx (3)

which yields

�
�

(u−�)�� dx=0 ��=1, . . . , NE (4)
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Since it is convenient to use co-ordinate formulation, let us rewrite (2) and (4). We notice that
the mass matrix in (2) is diagonal in space dimension two and the ith coefficient is given by

�
�T� �+ �T� �

3
if i is the edge T��T�

�
�T� �

3
if the edge i is on the boundary ��

Then for �=��=1
NE a��� one gets �EV �=�j=1

NF uj�j with

� uj=
�T� ���+ �T� ���

�T� �+ �T� � if j is the number of the common edge of triangles T� and T�

� uj=�� if j is the number of an edge belonging to ��

For u=�j=1
NF uj�j, system (4) yields �VE u=��=1

NE ���� with

��=
uj+uk+ul

3

where j, k, l are the T� edge numbers.

2.2. Application of the footbridges to a scalar equation

To fix ideas and without losing any generality, we shall consider here the two-dimensional
scalar convection–diffusion equation

��

�t
+div(�C)=	�� in � (5)

where C is a constant vector of R2 and 	�0 is the diffusion parameter. The function
�=�(x1, x2, t) is a real function.

We use a time-splitting strategy for separating each operator and we refer to the footbridge
previously defined for solving Equation (5) numerically. Let us suppose that at each instant tn,
we get two approximations �n of the function �( . , tn), one belonging to the finite volume
space V and the other one to the finite element space E. We proceed by showing how to
compute the next time step approximation of the solution.

Considering the initial value problem

��

�t
+div(�C)=0 (6)

where the initial data are the finite volume representation �n�V, one can compute easily an
optimal upwind numerical discrete flux written under the form

�
T��N(T�)


C
�,�

n
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for all T� of the triangulation T. We denote N(T�) as the set of the neighboring triangles of
T�. Hence the approximation of the solution to (6) after a time step �tn is given by

��
n+1=��

n−�tn �
T��N(T�)


C
�,�

n , �T��T

In case of a linear problem, all the upwind schemes yield the following flux:

� 
C
�,�

n = �T��T� ���
nC ·	� �� if C ·	� ���0

� 
C
�,�

n = �T��T� ���
nC ·	� �� if C ·	� ���0

� 
C
�,�

n =0 if C ·	� ��=0

where 	� �� denotes the normal vector from the triangle T� toward the triangle T�. An implicit
scheme could be implemented, but we do not want to address this question here and we refer
to Ghidaglia et al. [34].

At the same time, we solve the following diffusion equation, where the initial data are the
finite element representation �n�E:

��

�t
=	�� (7)

with the non-conforming finite element method (related to E) and a forward Euler time
scheme. Hence �n+1�E is solution to the linear system

�
�

��n+1−�n

�tn

�
�j dx= −	 �

NE

�=1

�
T�

��j ·��n+1 dx, �j=1, . . . , NF (8)

This latter integral makes sense since �n+1 and �j are linear on each T�. Now since the �j are
continuous along the normal direction to the edges, we get

�
NE

�=1

�
T�

��j ·��n+1 dx=
�

�
��j ·��n+1 dx (9)

Finally, our approach yields the following algorithm:

� 1. Construct an approximate solution �0�V of the initial data �0 with, for instance

��
0=

1
�T� �

�
T�

�0(x) dx, ��=1, . . . , NE

� 2. Compute �n,1�V solution at time tn+�tn of Equation (6) with the initial value �n�V
by using
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��
n,1=��

n−�tn �
T��N(T�)


C
�,�

n , ��=1, . . . , NE

� 3. Thanks to the footbridge, get the representation in E

�n,2=�EV �n,1�E

� 4. Compute �n,3�E solution at time tn+�tn of Equation (7) with the initial data �n,2�E.
� 5. Thanks to the inverse footbridge �VE, go back to the representation of the solution in

V

�n+1=�VE �n,3�V

� 6. Except you reach computational final time, go to step 2.

It is clear that this algorithm involves too much numerical viscosity, in particular when 	=0.
Indeed, this comes from the fact that �VE ��EV	IdV.

3. A MORE RELEVANT FOOTBRIDGE

Since the L2 projection on the finite volume space �VE introduces a too large amount of
diffusion, we propose in this section to re-define an inverse footbridge. To do so, we come
back to the definition of the direct footbridge (by considering Equation (2)) and we look for
the existence of a right inverse of �VE in order to have zero diffusion in case of an inviscid
problem. It leads us to a least square formulation and to a footbridge � that does not present
such a disadvantage. We then study the possibility of its computation. The superscripts FV and
FE are used to define the space in which the function belongs.

Let uFE be given in E, we would like to find, if it exists, a function �FV=�uFE in V such
that

�
�

�FV�j dx=
�

�
uFE�j dx, j=1, . . . , NF (10)

Proposition 1
Assuming that (10) has a solution for all uFE in E, we have ���EV=IdV.

Proof
We notice that if ��V then uFE=�EV � is found by solving formula (2)

�
�

(uFE−�)�j dx=0, �j=1, . . . , NF
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Combining this latter equation with (10), one gets for �FV=� uFE=���EV(�) the relation

�
�

(�FV−�)�j dx=0, �j=1, . . . , NF (11)

It follows that if T��T� is the support of �j, then (11) becomes

�T� �(��
FV−��)+ �T� �(��

FV−��)=0

since the function �= (�FV−�)�j is linear on each triangle and the quadrature formula
�T�

� dx= �T� ��(G�), where G� is the centroid of T�, is exact in two dimensions.
Let us start from a boundary edge, Aj=T����. Hence, Equation (11) yields

�T� �(� �
FV−��)=0

then one has �FV=� on the ‘boundary triangle’ T�. Since there is no remote triangle, we
conclude by induction on the next triangles: �FV=�. �

Proposition 2
The footbridge �EV is injective.

Proof
This follows directly from the proof of Proposition 1. �

Now we are interested in the existence and computation of �FV solution to (10). In order to
solve this problem, we introduce the following matrix notations:

� bFE is the vector of RNF with bj
FE=�� uFE�j dx, j=1, . . . , NF

� B is the NF by NE real matrix with Bj�=�� ���j dx

Then (10) can be used to find the �FV�RNE solution of the overdetermined (at least for large
NE) linear system of equations

B�FV=bFE (12)

In general, there is no solution to system (12) except if bFE belongs to the image of B. So, we
consider the solution in the least squares sense

find �FV�V such that ��B�FV−bFE�� is minimal (13)

This problem has one and only one solution if the rank of B is equal to the number of column,
i.e. Rk(B)=NE and in that case the solution is given by

�FV= (tBB)−1tBbFE
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We recall that B�FV is the orthogonal projection of bFE on the image of B and that if
Rk(B)=NE, then tBB is a symmetric, definite, positive matrix.

Proposition 3
Rank of B is equal to NE.

Proof
The proof has already been done since if one has a linear combination of the columns of B
equal to zero then it is equivalent to Bx=0, meaning �EV x=0 and then x=0 from
Proposition 2. �

Theorem and definition
Let uFE be given in E. The mapping PVE, which transforms the function uFE into �FV
PVEuFE

in V, a solution to (13) satisfies

PVE ��EV=IdV

Proof
It follows from Propositions 1 and 3 since the solution of the minimization problem (13) is
unique. �

We now emphasize the structure of matrices B and tBB. The matrix B has at most two
non-zero coefficients per row and three per column. Indeed, on one hand if j�{1, . . . , NF} is
such that the edge Aj=T��T�, then

Bj�=
�T� �

3
if ��{�, �} and 0 elsewhere

On the other hand, if Aj=T����, one gets the following result:

Bj�=
�T� �

3
if �=� and 0 elsewhere

Proposition 4
The matrix tBB is sparse.

Proof
For all triangles T� and T� triangles, one gets

(tBB)��= �
NF

j=1

Bj�Bj�= �
NF

j=1

�
�

���j dx
�

�
���j dx= �

NF

j=1
j�T��T�

Bj�Bj�= �
NF

j=1

j�T��T�

�T� ��T� �
9

since Bj�=0 if the edge j does not belong to T�.
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Finally, tBB is given by the formula

�
�
�
�
�
�
�

(tBB)�,�=
�T� �2

3
, ��=1, . . . , NE

(tBB)�,�=
�T� ��T� �

9
if T�	T� have a same edge

(tBB)�,�=0 if T� and T� do not have a common edge

(14)

We proceed by showing how to compute the footbridge PVE. The inversion of tBB is done
thanks to a Choleski decomposition (once and for all for a fixed mesh) with a reordering of
the rows and columns using the minimum degree algorithm (described in George and Liu [35]).
Then one gets

tBB= tUDU

where U is an upper triangular matrix with coefficient 1 on the main diagonal and D is a
diagonal matrix. The computation of PVE requires O(NE2) operations once the Choleski
factorization has been done (O(NE2) operations).

4. ABOUT THE CANCELATION OF MESS ERRORS

We are concerned in conservation law problems: an interesting issue in this type of problem is
conservation of ‘mass’, i.e. the integral �� u dx, where u is the computed solution. In this
section, we observe that the inverse footbridge introduces non-physical errors and we are
motivated in finding a way to conserve this integral. The idea developed here consists of
imposing the value of the mass to the inverse operator and leads to a constrained optimization
problem which is studied. First let us show the following proposition:

Proposition 5
For all uFV�V, uFE=�EV uFV satisfies

�
�

uFE dx=
�

�
uFV dx

Proof
The constant function 1 belongs to E since 1=�j=1

NF �j. We then obtain the result by using the
definition (see formula (2)) of �EV. �

On the other hand, PVE does not necessarily satisfy the following property:

�uFE�E,
�

�
PVEuFEdx=

�
�

uFE dx
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Here is a counterexample. Let us consider the domain � composed by three triangles as
illustrated in Figure 1. One has NF=7, NE=3.

Let us denote by bj
FE=�� uFE�j dx for j=1, . . . , 9. The vector �FV=PVEuFE is the solution

to the system tBB�FV= tBbFE, which using

(tB)�j=
�

�
���j dx, j=1, . . . , NF, �=1, . . . , NE

is equivalent to

�
�

�� �
NF

j=1

(B �FV)j�j dx=
�

�
�� �

NF

j=1

bj
FE�j dx, �=1, . . . , NE

Since �� ���j dx=0, if j�T� one gets

�
j�T�

(B�FV)j
�

�
���j dx= �

j�T�

bj
FE �

�
���j dx, �=1, . . . , NE

and it yields

�
j�T�

(B�FV)j= �
j�T�

bj
FE

In the present case, we obtain the following system for the three components ��
FV:

�
�
�
�
�
�
�
�
�

�T1��1
FV+

�T2�
3

�2
FV=b1

FE+b2
FE+b3

FE

�T2��2
FV+

�T1�
3

�1
FV+

�T3�
3

�3
FV=b3

FE+b4
EF+b5

FE

�T3��3
FV+

�T2�
3

�2
FV=b5

FE+b6
FE+b7

FE

It is then straightforward that

Figure 1. 3-triangle domain.
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�
�

�FV dx= �
3

�=1

�T� �u�
FV=

1
7

(6b1
FE+6b2

FE+9b3
FE+3b4

FE+9b5
FE+6b6

FE+6b7
FE)

which is different (for almost all the values) from �� uFE dx=�j=1
7 bj

FE. �

We propose to modify the footbridge PVE in such a way that it will conserve �� u dx and still
follows PVE ��EV=IdV.

So we replace problem (13) by the following constrained optimization problem:

�
�
�
�
�

find �FV�V minimizing ��B�FV−bFE��
under the constraint

�
�

�FV dx= �
NE

j=1

bj
FE

(15)

Let us denote m=�j=1
NF bj

FE and C= t(�T1�, . . . , �TNE �) the vector of RNE whom components are
the triangle areas. The constraint may be then written as

tC�FV=m

Hence using the Lagrange multiplier method, the constrained condition is included implicitly
in the formulation that now involves a saddle-point problem

	find (�FV, 
)�V×R

that make stationary 
(�FV, 
)= ��B�FV−bFE��2+2(tC�FV−m)

(16)

It is well known that if (��
FV,
�)�V×R is a saddle-point of 
, i.e.


(��
FV, 
)�
(��

FV, 
�)�
(�FV, 
�), �
�R and �uFV�V

then ��
FV is a solution to problem (16).

Furthermore, one has

�


��FV (��
FV, 
�)=0,

�


�

(��

FV, 
�)=0

meaning that (��
FV, 
�) is the solution of the linear system

�tBB C
tC 0

����
FV


�

�
=
�tBbFE

m
�

(17)

Conversely, considering ��
FV�V solution of (16) and let

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 951–986



F. PASCAL AND J.-M. GHIDAGLIA964


�= −
(BC, B��

FV−bFE)
��C ��2

then (��
FV, 
�) is a saddle-point of 
.

The matrix

�tBB C
tC 0

�
is invertible since tBB is a positive-definite matrix and tC(tBB)−1C is different from zero.
Then, problem (16) has a unique solution, which allows us to construct another footbridge PVE*
as follows. Let uFE be given in E, then the application PVE* , which associates with uFE the
element ��

FV=PVE* uFE�V, a solution of (17), satisfies

� P*VE ��EV=IdV

� �� P*VEuFE dx=�� uFE dx, �uFE�E

The scheme for implementing the footbridge PVE* is now described. A block factorization is
computed to solve system (17). Since tBB is factorized in the form

tBB= tUDU

we expect that the factorization of (17) may be written as

M=
�tBB C

tC 0
�

=
�tU 0

tS 1
��D 0

0 H
��U S

0 1
�

A simple substitution gives

M=
�tUDU tUDS

tSDU H+ tSDS
�

and hence

S=D−1tU−1C, H= − tSDS

Since D and U are invertible, S is a vector of RNE different from zero and H belongs to R*.
So the computation of this footbridge requires no further operations.
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5. A TWO-DIMENSIONAL SCALAR CONVECTION–DIFFUSION EQUATION

The first series of numerical experiments performed to test the scheme described in previous
sections concerns the approximation of the solution to the initial value problem (5) over the
domain �= ]0, 3[× ]0, 3[, with the following boundary conditions:

��

�y
(x, 
3)=0, i.e. Neumann conditions

and

�(0, y)=�(3, y) i.e. periodic conditions

These conditions are formulated in such a way that they are well suited to each of the
fractional steps (6) and (7). Note that for this particular problem, the exact solution � is such
that the integral �� � dx remains constant in time.

The initial condition for all simulations considered here corresponds to a Gaussian cone at
position x=0.5 and y=1.5 and is given by

�0(x, y)=exp(−50((x−0.5)2+ (y−1.5)2))

We expect that our discrete scheme for the diffusive part provides good approximations of the
solutions for large Peclet numbers (where the Peclet number Pe= ��C ��h/	 measures the ratio
between convective effects and diffusive effects) and is not sensitive to the size of Pe. However,
we are aware that simulations also depend of the approximation of each step, and in particular
that the convective scheme may involve too much viscosity. To examine these properties, we
consider two different kinds of advection.

5.1. An ad�ection parallel to the mesh

5.1.1. Results with the footbridge defined in Section 4. The domain is discretized into three grids
similar to the regular Cartesian mesh show in Figure 2 with, respectively, 2×30×30,
2×60×60, 2×120×120 triangles. The convection vector C is equal to (1/2, 0) and tests are
done with six values of the viscosity coefficient varying from 0 to 10−1. For 	 smaller than
10−3, i.e. Peclet number larger than 12.5, we have a regime dominated by convection. For 	

equal to 10−2, the Peclet number is around 5: convective and diffusive effects are similar. For
	 equal to 10−1, we have a regime dominated by diffusion with a Peclet number less than 1.

The time step is chosen according to stability conditions: it must enforce the Courant–
Friedrich–Lewy (CFL) condition for the convective step. In others words, �t is computed in
such a way that the following CFL number is less than or equal to 1 (	� j denotes the unit
normal vector to the edge Aj)

CFL
 max
T��T

max
Aj��T�

�t
�Aj ��C ·	� j �

�T� � (18)
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Figure 2. Regular mesh of 20×20×2 triangles.

For the present regular meshes, the CFL number is exactly 1 for, respectively, �t equal to 3/30,
3/60, 3/120.

We integrate the evolution equation using the numerical model defined in Section 4 between
t=0.0 and t=6.0. The partial differential equation (5) moves the cone to the right and at final
time the Gaussian cone has reached its initial position. The influence of the physical or
numerical viscosity can be seen in the resulting cone height and in the shape of the computed
convected cone.

At time t=6.0, cuts through the field � at position x=0.5 and y=1.5 are shown in Figures
3–8 (the field has been post-processed: the cell values are projected on the nodes of the mesh).
These cuts allow a qualitative comparison of the simulations obtained with different values of
the parameter 	. In case of a zero parameter, simulations reproduce exactly the field � at time
t=6.0 without any numerical diffusion since horizontal and vertical profiles are similar to the
initial ones. This result conforms with the building of the footbridges and the property
PVE* ��EV=IdV. For 	=10−5 and 10−4, the height of the cone decreases slowly with time,
which is due to the low viscosity parameter. With 	=10−2 and 10−1, the method we present
reproduces the effect of the diffusive operator very precisely (low height and stretch shape of
the cone) and retains the correct value of �� � dx since the errors produced on it are very
similar to the epsilon machine during all the time evolution. These results are mostly
independent of the refinement level of the mesh.
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Figure 3. Mesh 30×30: cut at X=0.5 at t=6.0.

Figure 4. Mesh 30×30: cut at Y=1.5 at t=6.0.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 951–986



F. PASCAL AND J.-M. GHIDAGLIA968

Figure 5. Mesh 60×60: cut at X=0.5 at t=6.0.

Figure 6. Mesh 60×60: cut at Y=1.5 at t=6.0.
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Figure 7. Mesh 120×120: cut at X=0.5 at t=6.0.

Figure 8. Mesh 120×120: cut at Y=1.5 at t=6.0.
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Figure 9. Mesh 40×40. Evolution of (a) the height of the cone, (b) the mass integral, (c) the variation
of the mass integral. Continuous line: 	=0.001. Dashed line: 	=0.01.

5.1.2. Studies of the operator defined in Section 3. We sum up computations with the inverse
footbridge defined in Section 3 and on an intermediate mesh of 2×40×40 triangles. Since it
does not cancel errors in �� � dx, the simulations of this integral present slightly small
non-monotonically errors in time. Indeed, Figure 9 shows the evolution of (a) the maximum
of the finite volume solution (which corresponds to the height of the cone and which still
behaves corectly) but also of (b) �� �FV dx and (c) its variation during the longer time interval
[0, 180]. One can notice that the values of �� �FV dx, which depend on the topology of the
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mesh (there are some regular triangulations of � for which the inverse footbridge defined in
Section 3 cancels the errors on it) do not differ so much from the initial value. It can be
observed in Figure 9(b) that there is a slight increase but less than 0.1 per cent at t=180.0 and
on Figure 9(c) that at each time step, the increase stay below 10−7. Table I, which gives the
numerical values of the integral at the beginning and at the end of the computation, confirms
this small increase (at least for viscous parameter larger than 10−3) but suggests that this
constraint on cancelling errors in �� � dx is not very important in the present case.

5.1.3. Comparison with an o�erkilled solution. Now we describe some numerical results of
convergence in order to validate the algorithm. A measurement of the numerical convergence
has to be defined. Since there is no analytical solution to the problem (even for this simple
linear problem), one way to measure the convergence is to compare the results with an
‘overkilled’ solution uRef of the problem, i.e. a considered as exact solution which is computed
at time t=6.0 on a very fine mesh with a converging known scheme. In the present case, a
classical upwind finite difference semi-implicit scheme is employed to approximate the solution
on a regular mesh of 1000×1000 points, with the CFL number equal to 1.

In Figure 10 for the parameter 	=0.001 and in Figure 11 for a lower viscous parameter
	=0.00001, we have plotted (with a log–log scale) versus the space step h (we take h=3/n for
the 2×n×n triangles mesh) the following data:

� the maximum of the overkilled solution uRef (continuous line)
� the maximum of the computed solution uVF (crosses points)
� the L� difference max

�
(�uVF−uRef�) (diamond points)

� the L2 difference
1

���
��� (uVF−uRef)2 dx

�1/2

(square points)

� the L1 difference
1

��� �� �uVF−uRef� dx (plus points)

� the reference slope −1 with a dash line

In both cases, one can observe that the maximum of the computed solution uVF converges to
the maximum of the overkilled solution and that the rate of convergence of the three
differences is governed by the order of space step (O(h)), since curves are parallel to the slope
−1 (at least for small h).

Table I. Errors on the mass integral.

Mass integral mesh 40×40	Time % initial mass integral

180 0 0.62831841E−01 100
10−4 and 10−5 0.62831841E−01 100180
10−3180 0.62873417E−01 100.07
10−2 0.62888212E−01 100.09180

100.010.62838604E−0110−1180
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Figure 10. Comparison with an overkilled solution: differences versus space step for 	=0.001.

5.2. An ad�ection non parallel to the mesh

Here we seek the solution of the same scalar convection–diffusion equation but computations
are now obtained on an unstructured mesh as shown in Figure 12. From this mesh, we have
performed a sequence of three finer meshes by successively dividing each triangle into 4
congruent triangles. Some further parameters like the number of volumes (NE), the number of
edges (NF), the minimum and the maximum of the triangle areas are reported in Table II,
where we have also listed the time step and the corresponding Peclet number. Here the time
step is chosen such that the CFL given by formula (18) is equal to 1.

We have collected the initial and final height of the cone (respectively at time t=0.0 and at
time t=6.0) in Table III and computed the ratio between these two values. One can notice
that in the present case, the advective fractional step does not accurately convect the Gaussian
cone in the sense that its shape is widely stretch at final time even for a zero viscous parameter.
For instance, for the coarser grid, the final amplitude of the cone represents only 14.8 per cent
of the initial one and in Figures 13 and 14, the final profile for 	=0 does not any longer
compare with the initial one. This is due to the poor ability of schemes to reproduce pure
convection on unstructured grid without involving too much viscosity and specially, like it is
the case here, with low-order and explicit scheme. These distortions with the initial cone
decrease when the grid becomes finer.
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Figure 11. Comparison with an overkilled solution: differences versus space step for 	=0.00001.

Nevertheless, cuts through the solution field at t=6.0 shown in Figures 13 and 14 and
the behavior of the height of the bump with the viscous parameter in Table III confirm the
observation that the footbridges and splitting operators have a good ability to discretize the
diffusive operator in the cell finite volume context. Indeed, on one hand as long as the
convective step involves too much viscosity, final results are not changes, i.e. no more
diffusion is added to the computation, and on the other hand in a dominant diffusive
regime, results correspond to the expected ones: the physical diffusion decreases and
spreads the cone and the phenomena are independent of the mesh. At this stage, we must
emphasize that the slightly deformed shape of the resulting cone is artificial and is due to
the graphical process we choose to represent a piecewise constant function without any
post-processed projection on the nodes.

6. A NON-LINEAR SYSTEM

In this section, we present numerical results that demonstrate the performance of the
footbridges between finite volume representation and finite volume element representation
introduced to discretized diffusion operators in the case of more complex two-dimensional
models. All the numerical examples proposed here refer to the inverse footbridge PVE*
described in Section 4.
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Figure 12. The coarse mesh.

Table II. Non-parallel mesh advection: parameters of the meshes.

Grid 1 Grid 2 Grid 3

3112 12 448NE 49 792
NF 4740 18 816 74 976
min �T � 0.00108 0.00027 0.000058

0.00670 0.001675max �T � 0.00041875
�t 0.0425 0.02125 0.010625

0.06217/	 0.03108/	 0.01554/	Peclet number

6.1. A system from gas dynamics

We consider a simplified model of the Navier–Stokes equations. The non-linear system, which
models compressible and isentropic flows, is given by

�

�t
� �

��

�
+� ·

� ��

����+pId
�

−� ·
� 0
T

�
=0 (19)

We note � as the density and � as the velocity field t(u, �). The pressure p follows p=�� and
the viscous tensor T is defined by
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Table III. Non-parallel mesh advection: maximum of the solution at t=6.0
and its ratio to the maximum at t=0.0.

Grid 1 Grid 2max{��} at t=0 Grid 3
0.941 0.993 1.000

0.139 (14.8) 0.290 (29.2)	=0 0.446 (44.6)
	=10−5 0.139 (14.8) 0.289 (29.1) 0.444 (44.4)

0.137 (14.6)	=10−4 0.279 (28.1) 0.421 (42.1)
0.117 (12.4) 0.211 (21.2)	=10−3 0.285 (28.5)
0.0502 (5.30) 0.0635 (6.40) 0.0693 (6.93)	=10−2

0.00818 (0.90) 0.00898 (0.90)	=10−1 0.00904 (0.90)

Percentages in parentheses.

Figure 13. Grid 2: cuts at X=0.5 at t=6.0.

T=	
	

(��+ t��)−
2
3

(� ·�)Id



To solve system (19), we implement the fractional technique we have described in Section 2.
The first step is concerned with the Euler system of an isentropic gas and corresponds to
T=0. It is solved by an explicit first-order accurate upwind finite volume scheme lying on the
notion of characteristic flux proposed by Ghidaglia et al. [36]. Let us remind now how this
scheme approximates the solution of the following hyperbolic system in space dimension d :
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Figure 14. Grid 2: cuts at Y=1.5 and t=6.0.

��

�t
+� ·f(�)=0 or, similarly,

��

�t
+ �

d

i=1

�fi

�xi

(�)=0

If n is a unitary vector of Rd, we denote A(�, n) the diagonalizable Jacobian matrix

Akl(�, n)= �
d

i=1

�f i
k(�)
��l

ni, 1�k, l�d

and we suppose that the sign matrix is defined in the following way:

sgn(A(�, n))=P−1 sgn(diag(
i))P

where A(�, n)=P−1 diag(
i)P. Here diag(
i) is the diagonal matrix of eigenvalues. Let K and
L be two volumes such that K�L	�, the numerical flux function on their interface K�L is
then approximated by the characteristic flux defined by the following formulas:

�
�
�
�
�

�(�K, �L, 	� K,L)

f(�K)+ f(�L)

2
·	� K,L−sgn(A(�K,L, 	� K,L)) ·

�f(�L)− f(�K)
2

·	� K,L
�

�K,L=
�K ��K+ �L ��L

�K �+ �L �
(20)
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where 	� K,L is the unit normal to K�L oriented from K to L and �K (resp. �L) represents the
approximation of � on K (resp. L).

Hence in the present case, if WK
n is the approximate solution of (19) on the nth time level

in the volume K, step 2 of the algorithm described in Section 2 is replaced by

WK
n+1,1=WK

n −
�t
�K � �

L�N(K)

�K�L ��(WK
n , WL

n , 	� K,L) �K�T

This explicit step is stable under the following CFL condition:

CFL
max
K�T

max
L�N(K)

max
i

�t
�K�L ��
i �

�K � �1 (21)

In the second fractional step concerning the diffusion problem, i.e. step 4 of our approach, the
system can be readily written as

�
�
�
�
�
�
�
�
�

��

�t
=0

�(�u)
�t

=	
�

�x
	

2
�u
�x

−
2
3
��u

�x
+

��

�y
�


+	
�

�y
��u

�y
+

��

�x
�

�(��)
�t

=	
�

�x
��u

�y
+

��

�x
�

+	
�

�y
	

2
��

�y
−

2
3
��u

�x
+

��

�y
�
 (22)

One notices that in this step �(x, t)=�(x, tn), for all t� tn. Hence, the direct and the inverse
footbridge (steps 3 and 5 of our approach) are applied only to the components of the velocity.
Afterwards, we use a variational formulation in E2 to approximate the solution (u, �) of the
two last equations of the system (22) with an implicit (and stable) forward Euler scheme for
the time discretization.

6.2. A shock tube problem

We first provide results for an extension of the one-dimensional Sod tube, which is a standard
test case for Euler solvers. Here, we consider the viscous solution of this problem. We take the
unstructured mesh shown in Figure 15 and integrate over the rectangle �= [−0.5, 1.5]× [0, 1]
system (19), with p=�1.4. The initial data are u=�=0 in � and �=1 for x�0.5 and
�=0.193 for x�0.5. To ensure the stability condition (21), we have set �t=0.004.

Boundary conditions at y=0 and y=1 are wall boundary conditions meaning � ·	� =0.
Some Neuman conditions are simply implemented at the outflow lateral boundaries as long as
a non-zero velocity does not reach them and since we do not want to address the open
compressible Navier–Stokes problem of boundary conditions at this stage. Let us define that
for this particular test, boundary conditions are identical in the inviscid and viscous steps.
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Figure 15. Mesh over the domain [−0.5, 1.5]× [0, 1].

At time t=0.21, Figure 16 shows the finite volume representation of the pressure and
Figure 17 the finite element representation (the mid-edge values have been joined together) of
the first component of the velocity, both computed with a zero viscous parameter. The vertical
component of the velocity is almost zero and cuts at constant y compare well with standard
results for this problem in one dimension. Indeed, one can observe that the method resolves
the dynamic of the moving rarefaction wave and shocks and that the presence of the
footbridges does not modify in any sense the solution since it is built for.

Figure 16. 	=0: finite volume solution of the pressure (=��) at t=0.21.
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Figure 17. 	=0: finite element solution of horizontal velocity at t=0.21.

For 	=0.01, looking at the finite volume representation of the pressure and the finite
element representation of the horizontal velocity plotted in Figures 18 and 19, one can observe
that the footbridges take into account the viscosity in a relevant way. Cuts through the
horizontal axis y=0.26 in the horizontal velocity field in Figure 20 and the density in Figure
21 show that the viscous terms are correctly approximated for different values of the parameter
	. The continuous line curves represent the exact solution for the inviscid problem. The moving
shocks are smoothed and neither the finite solution nor the finite element one present spurious
oscillations.

Figure 18. 	=0.01: finite volume solution of pressure at t=0.21.
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Figure 19. 	=0.01: finite element solution of horizontal velocity at t=0.21.

Figure 20. Cuts through the horizontal velocity at Y=0.26 and t=0.21 for five values of 	.

6.3. Flow o�er a NACA0012 airfoil section

The efficiency of the proposed method is now illustrated by considering (following Glowinski
and Periaux [37]) a two-dimensional viscous flow around an NACA0012 airfoil at an angle of
attack of 0° and a viscous parameter equal to 0.002. We assume the flow to be uniform at
infinity and the variables to be non-dimensionalized by a free stream vector. We prescribe the
density �� and the velocity ��= t(u�, 0) such that mach number at infinity is equal to 0.85.
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Figure 21. Cuts through the density at Y=0.26 and t=0.21 for five values of 	.

Figure 22. Detail of the grid around the NACA0012 airfoil.
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Figure 23. Footbridge scheme: mach isolines around the NACA0012 airfoil (Re=500, M=0.85, �=0°).

Figure 24. Green–Gauss reconstruction: mach isolines around the NACA0012 airfoil (Re=500, M=
0.85, �=0°).
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For a time-dependent problem, we need initial conditions that are computed from these values
and our aim is to obtain a steady state solution. For this external flow, infinity has been
replaced by a large curve and on the inflow boundary condition, �� and (u�, 0) are prescribed
while on the outflow, Neuman boundary conditions are imposed. On the airfoil, we use a
no-slip boundary condition. Let us mention that for the inviscid step, a well boundary
condition like � ·	� =0 on the airfoil replaces the no-slip condition. We still apply the direct
and inverse footbridge to the two components of the velocity although the footbridge we
implement does not conserve the boundary conditions since in the finite volume method used
for the inviscid step, boundary conditions are imposed by means of the flux through the
boundary interface.

Figure 22 shows an enlargement of an unstructured triangulation obtained by the mesh
software ‘EMC2’ developed by Hecht and Saltel [38] and used near the profile to solve the
problem. Figure 23 shows a zoom around the section of the computed isomach lines associated
with the steady solution reached for a relative error less than 10−5; the time step is fixed such
that the CFL number (21) is equal to 0.8. The complex features of the flow are in good
agreement with those (figure 6(b)) obtained by Rostand and Stoufflet [14] with a second-order
accurate version of the mixed element–volume formulation referred to in the Introduction. An
additional aim of this experiment is to examine how well the scheme enforces boundary
conditions. One can notice that the proposed scheme correctly recovers the physical viscous
layer as does a Green–Gauss reconstruction of the gradient (formulation (4.77) in Barth [39]):
in Figure 24, mach number contours computed with this reconstruction on the same mesh are

Figure 25. Convergence history for NACA0012 airfoil (Re=500, M=0.85, �=0°).
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plotted. The coincidence of both results is very satisfactory. The history of convergence
presented in Figure 25 shows the logarithm of the velocity residual

max
��un+1−un�

�u�� ,
��n+1−�n�

����
�

versus the number of time step and proves that behavior of both schemes is similar.

7. CONCLUDING COMMENTS

In this paper, a multidimensional numerical solver is presented for computing viscous,
compressible flows in the context of cell-centered finite volume methods. The principle to
discretize the viscous terms stems from associating a finite volume and a finite element
representation of the solution on the same mesh called ‘footbridge’ and from using an operator
splitting to separate the convective part from the diffusive part. The convective part is solved
with a cell-centered finite volume method and the diffusive part is solved with a finite element
scheme.

Numerical experiments show that the resulting algorithm works well and that it is accurate
the stable under different conditions without any constraint on the aspect ratios of the volumes
in the mesh.

The explorations of the technique developed here are still in progress. Some analytical
proofs of the convergence of the footbridge have to be defined and will be presented in a
forthcoming paper with results of codes using continuous finite elements but also totally
discontinuous elements.

A three-dimensional generalization, which keeps the diagonal property of the mass matrix in
formula (2), has been proposed in Ghidaglia and Pascal [40] and has been successfully
introduced in an industrial code at EDF by Boucker [41].

ACKNOWLEDGMENTS

This work was performed in the framework of a collaboration between the Département Transferts
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